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1. Introduction

A set of observations under a design is said to be influential in

this paper if the set affects not only the fitting of the model to the

data but also the prediction in terms of the fitted model. In the

problem of identifying sets of t (a positive integer) influential

observations, we assume the underlying design is robust against the

unavailability of any t observations [Chosh (1979)]. We first explain

this concept by considering the standard linear model

E() = X , (1)

V(Y) = 021 , (2)

Rank X = p , (3)

where y(Nxl) is a vector of observations, X(Nxp) is a known matrix,

B(pxl) is a vector of fixed unknown parameters and a2 is a constant which

may or may not be known. Let d be the underlying design corresponding to

y. The design d is assumed to be robust against the unavailability of

any t observations in the sense that the parameters in 0 are still un-

biasedly estimable when any t observations in y are unavailable. There

are (t) possible sets of t observations. The idea of robustness of

designs against unavailability of data is fundamental in measuring the

influence of a set of observations.

We first measure the influence of a set of t observations by

assuming the observations in the set unavailable and then calculating the

sum of variances of their predicted values from the remaining (N-t)

observations. The largest value of the sum indicates the corresponding

set of t observations is the most influential in terms of precise "
,
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prediction of unavailable observations. We also measure the influence of

a set of t observations by assuming them unavailable and then calculatilig

the sum of squares of the elements of the covariance matrix between the

least squares fitted values of the remaining (N-t) observations and a

complete set of orthonormal linear functions of y with zero expecta-

tions. The largest value of the sum of squares indicates the correspond-

ing set of t observations is the most influential.

The Impoitance of knowing the influential set of observations at the

design stage is that (1) we can assess the influence of a set of unavail-

able observations in the planned analysis, (2) in the case of deficit of

budget during a long term experiment using the robust design where it may

be a good idea not to collect observations which are least influential.

2. First Method

We denote the ith set of t observations in y by Mei; and the re-

maining observations in yj by y4); the corresponding submstrices of X by

X i ) and xJi); the resulting design when t observations in the ith set

are unavailable by d( i ), i=l,...( N). The least squares estimators of 8
under d and dM') are 8 = (X'X)-x'yj and 8(1) = (Xji)'X())-XiJ .

(i)
We write the fitted values of y under d and d as zd= 0 and

X8 When t observations in the ith set are unavailable, the
* d(i)'

predicted values of unavailable observations Y2 from available observa-
^(i) (i)

tions are the elements in v2 = (i)"
tios re heeleens i -2 2 --d(i) *The reliability of these

estimators can be judged by V(Y2i)) o2x(i)(xi)'Xi)iX(2i)' The

first measure of influence of y is defined as

V

t v
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( =(i)) T Trace v(-I)) . (4)

The smallest value of I( 1 i ), i--,...,(N), for i=u, indicates that theth

uth set of t observations is the least influential in terms of precise

prediction of unavailable observations. On the other hand the largest

value of IIy'), i=i,...,(N) for i=w, indicates the wth set of t

observations is the most influential.

We denote B +X 2 (x)(X I)flX 2i)'. It can be checked
(i) it+2 1 1 2

that

B(i) = I - x 2  (x'x) x , (5)

(xx) -- B ) (6)

-^ - (i)(X(i); - z(i)Y ) = 2B- (7)

2E 'd Y-2 2 -d 2 (1)*
We denote the Ith observations In y by y and the ith row in X by x,

i ,.. .IN.

Theorem 1 For any design.

1-1

Proof. It follows from B (i) and B(i) given in (5) that for

i.e.,

_-1

I rs sX'X) x

The rest is easy.



Theorem 2 If for a design, the individual observations are equally

influential then
2

yi) p (9)

Proof. When the individual observations are equally influential, 11 (y)

is a constant independent of I for t=l and thus X~ ) = x1 and

S X1  x, is a constant independent of i. This in turn implies

from (5) that for t=l, x'(X'X)-I xt is a constant independent of i.

II

Ile know trace X (X'X)-IX ' = P n hs 'XX From (5), we

get x'LX1 i) x(i))-x p  and hence the result.-- 1 -? = ( W -i

Theorem 3 If for a design, the individual observations are equally

influential, then
p2t

I]i 2 ) (N-p) * (10)

Proof. For t=l and equally influential individual observations,

x'(X'X) xi = -P and hence the result in (10) follows from (8).

From (9) and (10), we observe that for a design with equally influential

individual observations Ii(y)) > t Ii(Y

3. Second Method

Let Z((N-p)xN) be a matrix such that Rank Z = (N-p), ZX = 0 and

ZZ' = I. It can be seen that Cov(y ,) - 0. This implies that has

the minimum variance within the class of all unbiased estimators of

E(yd).under (1-3). When t observations in the ith set are unavailable,

(i) M^)
the least squares fitted values are X 1 d(I) . le denote the

(I) M (i) (i)submatrices of Z corresponding to X I and X 2 by Z and 2 It

follows that Coy (y'i),zy): o ]. The

0q^ii),Z ) 01[x
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further Cov~y^i),Zy) is away from the null matrix, the more influential

is the set of t observations YS) We thus have the second measure of

influence as

12 (Y-S') = & 2 [Sum of squares of elements in Cov(yfii),ZY)] (11)

W'e now show some similarities between our two measures of influence

l((i)) and12y ).

Theorem 4 The following is true for ii..(N),

V(Z(1)~i) =V (z~yi~) *i

Prcof. We observe that Z((i) 1 Z~(i) =i) and hence Vrz(i)^(i))

a ZMix(i)(X(i)'X(i) )-lX(i)'Z(i)' = 0,2Z(i)X(i)(X(i)'X(i))-1X(i)'Z(i)' I

Theorem 5 The following in true.

1Y-i)= Trace V(Z~i);(i)) (13)

Proof. It can be seen that

12(Y2 (1) 02 Trace X()X'' )-X ) V 'VX )X i X

- a2Trace ZM (xi)(xi)'XVi))-1x 01'zii)

= Trace V(zli Y-1)

Trace vzI Y-2)

Corolla~yX We have

12 Trace vi) [zizi].(14)

The equation (13) displays the similarity between two measures of

Influence II(YAi)) and 12(Y-2i)). Although the matrix Z is not unique, it

can be checked that 12(y~i)) is unique for all choices of the matrix Z.
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4. Relationship

Cook (1977) proposed a distance function between and

popular as Cook's distance, at the inference stage as

D = ~~d i - (Y -d(i) (15)dD, . . . . . . . . . . .2 (15)

PS 
d

where (N-p)s' = (y - y )'( )- . The Cook's distance D measures the

degree of influence of t observations In the ith set on the estimation of

8.We now show that our first measure of Influence lli ! ) Is In fact

. related to D .

Theorem 6 From (4) and (15), we have

E(ps 2D 1  (_y(). (16)

Proof. We get from (6)

-Y = (i)^ -Y (i)) -B(i) (X"2)-

It now follows from (7), (15) and (17) that

E(ps 2D 02 Trace (B -1
P2di Trace (i) i t

a Trace X2 i)(Xi)'xii)jx i)'

This completes the proof.

5. Examples

64
Consider a 2 factorial experiment in a completely randomised set up

and suppose the elements in 8 are the general mean, the main effects and

the 2-factor interactions. The 3-factor and higher order interactions

are assumed to be zero. Thus p=ll. The treatments are denoted by (xI x 2

x 3 x4 ), x i=O,l,i=1, 2 ,3 ,4 . For brevity, we indicate a treatment by the

e1 r OL -- Z Y-,~
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positions where the level I is occuring. For example, the treatment

(1100) is denoted by 12. The treatmedt (0000) is denoted by 6.

Design I

Consider a design with 15 treatments and we write the treatments in

the order (6,1,2,3,4,12,13,14,23,24,34,123,124,134,234). Note that the

N elements in y, the rows of X and the columns of Z correspond to this

ordering. The matrix Z is given below

4a -3a -3a -3a -3a 2a 2a 2a 2a 2a 2a -a -a -a -a-

0 1 -1 1 -1 0 -2 0 0 2 0 1 -1 1 -1
Z=(.25)

0 1 -1 -1 1 0 0 -2 2 0 0 -1 1 1 -1

0 1 1 -1 -1 -2 0 0 0 0 2 1 1 -1 -1

where a = (1/ 5). The design is robust against the unavailability of any

two observations [Ghosh (1979)].

Table I

Influences of Individual Observations Under Design I

Observations - 1 -2
Ii01

y .. . 4.000 .800

yi,i=2,...,ll 2.333 .700

yii=12,..., 1 5  4.000 .800

r.

C,
Ca



Table II

Influences of Pairs of Observations Under Design I

Observations a-2 1a-2 1

(ypi)i2..1;y2Y5;11.333 1.500 41

(y Pyi )i=12, 14;(y 8 ,y,)i=.13, 14;

(yll,y1 )i=.14, 15.

(y~,i6. 1;y'i)=21,4 8.000 1.500

(Y y)i12 ,13, 15; (y4,yi )i12, 14, 15;

(y 'yi)i13, 14, 15, (y y1 )i14, 15,

(y9,y1 )i=1
3 , 14;( 'lyO'yl4Q;

(Yp )=2,.,1;8.667 1.600

(yy,)i~=1
3, 14,15;

(yl3,yi )i14,15;

(Yl4'Yl) 
N

-NZ
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Table II (Continued)

Influences of Pairs of Observations Under Design I

Observations 21,C-22

(y2)i)i34,,91,1;4.857 1400

y3y)i=4,5,7,8,11;

(y4,yi )i=5,6,8, 10;

(y6,yi )i=
7 ,8,9, 10;

(y 7,y.)i'9,1 1; (y8,y.)i=1O,11;

(Y2y,)i=6,7,8; (y3,yi )i=6,9,10; 10.000 1.400

We find that under Design I, any of y1 i=2,... ,1l is the least
i-

influential w.r.t. both Il and 12. Any pair of observations with 0- 2 1

equals 11.333 is the most influential w.r.t. 11. On the other hand, any

pair of observations with a- 12 equals 1.600 is the most influential

w.r.t. 12. The variability In values Of 12 is so small that it is very

hard to assess the influence w.r.t. 12 under this design.

%~
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-Des I~gn- 11

We consider a complete 2 4 factorial experiment with treat;I~ents

written in the order (1234, 0, 1,2,3,4,12,13,14,23,24,34,123,124,134,

234). The matrix Z Is as follow

o 0 1 -1 1 -1 0 -2 0 0 2 0 1 -1 1 -1

Z (.25) 0 0 1 -1 -1 1 0 0 -2 2 0 0 -1 1 1 -1

o o 1 1 -1 -1 -2 0 0 0 0 2 1 1 -1 A-

2 -2 1 1 1 1 0 0 0 0 0 0 -1 -1 -_1 -1-

This doe-,gn is rolbust against the unavail abi lity of any throe observa-

ions Lchosh (1979)]j. It can be checked that 1 1 (y) 2.2a and 1 2 (yI

2(.6875)o for i~l,...,16. Thus the individual observations are equally

influential w.r.t. both 11 and 12. For any pair of observations

corrcsponding to treatments with zero or three levels in common, the

value of a -2 1 is 8.000. For every other pair of observations, the

value of a- 2 1, is 4.667. We therefore see the validity of the equation

2
(10) in Theorem 3 for this example since 2 1 (y) = 4.4o . The value of

-2a 12 for any pair of observations is a constant 1.375. The remark on

12 for Design I also holds for Design 11.
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